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FOREWORD 

Research  related  to  f low  over  aerodynamic  bodies  and  to  advanced  nuclear 

propuls ion  is descr ibed   here in .   This  work w a s  performed  under NASA Grants 

NGR 14-004-028  and N s G  694, wi th  Mr. Maynard  F. Taylor,  Nuclear  Systems 

Divis ion,  NASA Lewis  ResearCh  Center as Technical Manager. A p a r t  of t h i s  

work was a l so   suppor ted   by   the  U.S. A i r  Force  under  contract  AF-AFOSR 1081-66. 
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ABSTRACT 

The s t e a d y - s t a t e   f l o w   c h a r a c t e r i s t i c s   i n  a rec tangular   cav i ty   loca ted  

i n   t h e  lower w a l l  of a two-dimensional  channel whose upper w a l l  w a s  moved 

wi th  a uniform  velocity,   were  investigated  by  solving  the  complete  Navier- 

Stokes  equat ions  for   laminar   incompressible   f luid  in   terms  of   the stream 

func t ion  and vo r t i c i ty .   Numer ica l   r e su l t s  were  determined f o r  a range of 

Reynolds  numbers  from 1 t o  500 and fo r   cav i ty   a spec t   r a t io s   o f  0.5, 1 . 0  

and 2.0. A circulat ing  f low  extending  the.whole  height  was observed  for  

shallow  and  square  cavit ies.   For  deep  cavity a secondary  vortex  near   the 

bottom  of  the  cavity was a l so   no t iced .  

Time-dependent so lu t ions   fo r   t he   vo r t ex   f l ow i n  a square   cav i ty  bounded 

by three  motionless  walls and a f o u r t h  moving i n  i t s  plane  were  obtained 

f o r  N i e =  10.0 and a s p e c t   r a t i o   o f  1 . 0 .  
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CHAPTER I 
INTRODUCTION 

On a i r f o i l s  a t  la rge   angles   o f   a t tack ,   the   adverse   p ressure   g rad ien t  

f requent ly   causes   l aminar   separa t ion   near   the   l ead ing   edge   resu l t ing   in  a 

severe s t a l l  condi t ion.  If such  ear ly   separat ion  does  not   occur ,   the   f low 

invar iab ly   separa tes   near   the   t ra i l ing   edge   caus ing  much mi lder  s tall .  Flow 

sepa ra t ion  on  aerodynamic surfaces   can  a lso  be  due  to   the  presence of per- 

tu rbances   and   cav i t ies ,  as i n   t h e   c a s e s  of   f inned   sur faces ,   tu rb ine   f low 

passages , bomb bays,  windows , and so on.  Cavity  flow  problem i s  a s p e c i a l  

case  of   the   general   problem  of   separat ion,   having most  of the  f low  character-  

i s t i c s   o f   t h e   l a t t e r .  Hence, in   th i s   s tudy   cav i ty   f low  has   been   inves t iga-  

ted   wi th   the   mot iva t ion  of obtaining a be t te r   unders tanding  of t h e  phenomena 

of   f low  separat ion  and  vortex  formation.  

1.1 Problem D e f i n i t i o n  

The purpose of  t he   p re sen t   s tudy  i s  to   i nves t iga t e   t he   f l ow  cha rac t e r -  

i s t i c s   i n  a r e c t a n g u l a r   c a v i t y ,   l o c a t e d   i n   t h e   l o w e r   w a l l  of a two-dimensional 

channel. The nature   of   the   vortex  formed  in   the  cavi ty  w i l l  depend on t h e  

Reynolds number and t h e   h e i g h t   t o   l e n g t h   r a t i o   ( t h e   a s p e c t   r a t i o )   o f   t h e  

cavi ty .   This   ra t io   toge ther   wi th   the   channel   he ight  and l eng th   de f ines   t he  

geometry. The nature   of   the   f low  approaching  the  cavi ty  would a l s o   i n f l u e n c e  

the   vor tex .  However, for s impl i f ica t ion ,   the   l ength   o f   the   channel  w a s  t a k e n   t o  

be i n f i n i t e  and the  upper  w a l l  of the  channel  was moved with a constant   velc-  

c i ty   thus   keeping   the   f low  approaching   the   cav i ty   ident ica l   in  a l l  cases .  

T h i s   a l s o   f a c i l i t a t e s   d e f i n i n g   t h e   c o n d i t i o n s  a t  the  upstream  and  the down- 

stream boundaries  of  the  channel.  

The problem  thus   re la tes  %o the   f low  over  a r e c t a n g u l a r   c a v i t y   i n   t h e  

lower w a l l  of a two-dimensional i n f i n i t e   c h a n n e l  where the  upper  w a l l  



i s  moving wi th  a uniform  veloci ty   (Fig.  1). The flow i s  assumed t o  be 

laminar,  incompressible  and  Newtonian. The r e s u l t s  are ob ta ined   fo r   d i f -  

ferent   aspect   ra t ios   and  Reynolds   numbers .  To magnify  the phenomena of  

s epa ra t ion  and v o r t e x   f o r m a t i o n   t h e   a s p e c t   r a t i o s  were chosen t o   g i v e   t h e  

reattachment of the   f low  over   the   cav i ty   and   no t   ins ide  it. 

1.2  Phenomenological  Discussion 

A laminar   separated  f low  can  be  def ined as a sepa ra t ed   f l ow  in  which 

a l l  shear   layers   of   importance  to   the  problem are completely  laminar.  The 

sepa ra t ion  and t h e   r e a t t a c h m e n t   o f   t h e   f l o w   o v e r   t h e   c a v i t y   r e s u l t s   i n  one 

or more e d d i e s   i n   t h e   c a v i t y   ( F i g .  1). One can  decompose the   separa ted   f low 

i n t o   s i x  more or less  d i s t i n c t   p a r t s :  (1) sepa ra t ion   po in t   r eg ion ,  ( 2 )  free 

s h e a r   l a y e r ,  (3 )  rea t tachment   po in t ,  ( 4 )  main r ec i r cu la t ing   eddy ,  ( 5 )  corner  

eddies,   and ( 6 )  e x t e r n a l  stream. 

Kistler and Tan' de f ine   t he   s epa ra t ion   po in t  as t h e   p o i n t  where a 

s t reaml ine   in   the   ne ighborhood  of   the   sur face   b reaks   abrupt ly  away from 

t h e   s u r f a c e .  The s t r eaml ine   t ha t   pas ses   t h rough   t h i s   s epa ra t ion   po in t   s e rves  

as a boundary   be tween  the   f lu id   in   the   channel   and   tha t   in   the   cav i ty .  The 

shea r   l aye r   i n   t he   ne ighborhood   o f   t h i s   d iv id ing   s t r eaml ine  i s  c a l l e d   t h e  

f r ee   shea r   l aye r .  The reat tachment   point  i s  t h e   s t a g n a t i o n   p o i n t  where p a r t  

of t he   f l ow i s  turned   back   in to   the   separa ted   reg ion   and   par t  moves  away 

from t h i s   r e g i o n .  The f low  wi th in   the   separa ted   reg ion  i s  made up  of  one 

or more eddies   wi th   s t reaml ines   tha t   c lose  on themselves.  

1 .3  H i s t o r i c a l  Backqround 

During the   f i f teen th   cen tury   Leonard0   da   Vinc i   observed   and   ske tched  

rec i rcu la t ing   eddies   in   the   f low  over   var ious   conf igura t ions .  However,  de- 

t a i l e d   s t u d i e s   o f   c a v i t y   f l o w  were car r ied   ou t   on ly   recent ly .   These   inves t i -  

ga t ions   genera l ly   cons ider   s teady   p lane   f low of an  incompressible Newtonian 

2 
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f l u i d   i n  a r ec t angu la r   cav i ty  bounded  by th ree   mo t ion le s s  walls and  by a 

four th .moving   in  i t s  own p lane .   This  i s  the   p ro to type   o f   p rac t i ca l   f l ow 

problems i n  which t h e   f l u i d  moves over a cav i ty .  

A model  proposed  by  Batchelor2  has  been  frequently  used i n   a n a l y z i n g  

cavity  f low.  According t o   t h i s  model, t h e   l i m i t i n g  ( i . e .  as l~ t e n d s   t o   z e r o )  

laminar   f low  cons is t s   o f  a f i n i t e  wake embodying a r e s i d u a l   r e c i r c u l a t i n g  

eddy  having   un i form  vor t ic i ty .   In   cav i ty   f low  the   separa t ion   reg ion  i s  

knows ' to   be   o f   f i n i t e   ex t en t .  For such  problems,  Batchelor's  model  appears 

t o  b e   c o r r e c t   f o r   t h e  limit N + m . This i s  based on the   assumpt ion   tha t  

v i scous   e f f ec t s  are r e s t r i c t e d   t o  a th in   l aye r   a long   t he   s epa ra t ion   s t r eam-  

l i n e .  Then an  exact   intergral   theorem  der ived  f rom  the  Navier-Stokes equa- 

t i o n s  for steady  f low shows t h a t   t h e   v o r t i c i t y  i s  uniform. The s p e c i f i c  

Re 

va1u.e o f   t h e   v o r t i c i t y  i s  obtained  by  matching  the  external  boundary  conditions 

using  the  boundary  layer  equations.   Other  theoretical   models were a l so   p ro-  

posed3 for   separated  f lows,   but   with  the  except ion  of   the  complete   Navier-  

Stokes  equat ions , none has  been  accepted as having  general   sound  basis .  

4 Mills car r ied   ou t   an   ana ly t ica l   s tudy   of   the   p ro to type   problem  for  a 

square  cavi ty   using  Batchelor 's   model .  He obtained a so lu t ion   of  a l i nea r i zed  

form of Von Mises' equat ion   for   s teady   f low  in   the   boundary   l ayer   for  con- 

s t a n t  and  varying  pressures   around  the walls o f   t h e   c a v i t y .  From t h i s   a n a l y s i s  

t h e   v o r t i c i t y   i m p a r t e d   t o   t h e   c o r e  i s  obtained  and i s  used   t o   de t e rmine   t he  

motion i n   t h e   c o r e .  Mills also  performed  experiments t o   v e r i f y   h i s   a n a l y s i s .  

The measured   ve loc i ty   p rof i les  were in   qua l i t a t ive   ag reemen t   w i th   t he   ana lys i s .  

However, t h e  measured v o r t i c i t y  of t h e   i n v i s c i d   c o r e  was about 1/3 the   p re-  

d i c t ed   va lue .   Th i s   e r ro r  was a t t r i b u t e d   t o   t h e   g a p   b e t w e e n   t h e   f i x e d  walls 

and  the moving wall. 

6 Burggraf3, Mills5 and  Kawaguti  have  solved  the same problem  numerically 

4 



using stream func t ion  and vor t ic i ty   equa t ion .   Burggraf   so lved  it f o r  a 

. s q u a r e   c a v i t y   f o r  a range  of  Reynolds number  from 0 t o  400. Mills solved 

it f o r   a s p e c t   r a t i o s   o f  0 . 5 ,  1.0 and 2.0 f o r  N = 100. Whereas,  Kawaguti 

considered  aspect   ra t ios   of  0 . 5 ,  1 . 0  and 2.0 and a range  of  Reynolds'number 

from O t o  64. 

Re 

They  employed c e n t r a l   d i f f e r e n c e s   t o   f o r m u l a t e   t h e   f i n i t e   d i f f e r e n c e  

equations.  Burggraf  and  Kawaguti  chose a square mesh for a l l  a s p e c t   r a t i o s ,  

whereas Mills used it for cav i t i e s   hav ing   a spec t   r a t io s  of 0 . 5  and 1.0 only.  

Kawaguti f i rs t  c a l c u l a t e d   t h e   v o r t i c i t y  at t h e  boundary  points  and  then  the 

s t ream  func t ion   and   vor t ic i ty  a t  e a c h   p o i n t   i n   t h e   i n t e r i o r .  Mills u t i l i z e d  

Liebmann's i t e r a t ive   t echn ique .  He went  over  the  stream  function  f ield  twice 

b e f o r e   e n t e r i n g   t h e   v o r t i c i t y   f i e l d  which was a l so   t r ave r sed   tw ice .  The 

boundary  values  of  vorticity  were moved by only one ha l f  of the   va lues   ind i -  

cated by the  boundary  condi t ion,  however (as i n  Kawaguti ' s   t reatment)   the  

v a l u e s   i n   t h e   f i e l d  were   (mos t ly )   g iven   t he i r   fu l l  movement. Mills a l s o   t r i e d  

a s i n g l e   i t e r a t i o n   p e r   f i e l d  and  found it b e t t e r   t h a n   t h e  above procedure.  

On the  other   hand,   Burggraf   underrelaxed  both  s t ream  funct ion  and  vort ic i ty  

in   t he   i n t e r io r   o f   t he   f i e ld .   Dur ing   each   i t e r a t ion   he   cons ide red   po in t s   i n  

each row p rogres s ive ly  from r i g h t   t o   l e f t   ( t h e   d i r e c t i o n   o p p o s i t e   t o   t h e  motion 

of   the  moving w a l l ) ,  wi th   the  rows t aken   i n   o rde r  from top  (moving w a l l )   t o  

bottom.  Both Mills and  Burggraf  employed the   co r rec t ed   va lues  as soon as 

they  were a v a i l a b l e .  Kawaguti w a s  unable   to   ob ta in   convergent   so lu t ion   for  

N~~ = 128. 

A t  higher  Reynolds numbers the  viscous  layer   thickness   diminishes .  

Burggraf   observed   tha t   in   th i s   case   the  mesh s i z e  must  be  decreased  for  the 

same degree of accuracy  and  the  relaxation  (convergence)  parameter must then 

be  decreased  for  convergence.  (Both  of  these  imply  an  increased number of 

i t e r a t i o n s . )  He a l so   found   t ha t   fo r   l a rge   Reyno lds  number t h e  mesh s i z e  had 

5 



a s t rong   in f luence   on   the   loca t ion  of t h e   v o r t e x   c e n t e r  as well as on t h e  

e n t i r e   f l o w   f i e l d .   I n   h i s   s t u d y   h e   a l l o w e d   t h e  maximum machine (IBM 7094) 

time f o r  one  case t o  be 30 minu tes .   Th i s   l imi t a t ion   pe rmi t t ed   accu ra t e  solu- 

t i o n s   f o r  N 5 400. However, approximate  solut ions were obta ined   for  Rey- 

nolds  numbers of  up t o  1000. 

Re 

Mills and  Kawaguti  reported a c i r cu la t ing   f l ow  ex tend ing   t he  whole  height 

fo r   sha l low and   squa re   cav i t i e s .   S imi l a r   r e su l t s  were r epor t ed  by  Burggraf 

f o r   s q u a r e   c a v i t i e s .  Kawaguti  found weak secondary  flows i n  a l a rge   r eg ion  

near   the  bot tom  of  a cav i ty   o f   a spec t   r a t io  2.0. However,  he was u n a b l e   t o  

determine  the  nature   of   these  f lows  because  of  a coarse  gr id   and  computat ional  

l i m i t a t i o n s .  Mills c l a i m s   t o  have  obtained  this  secondary  eddy at a l l  Rey- 

nolds  numbers.  According t o  Kawaguti t h e   c e n t e r  of t h e   v o r t e x  moves down- 

stream, as the  Reynolds number inc reases .  However, t h e  more accu ra t e   r e su l t s  

by  Burggraf,   obtained for a larger  range  of  Reynolds number than  those  by 

Kawaguit showed t h a t   t h e   v o r t e x   c e n t e r   s h i f t e d   f i r s t   i n   t h e  downstream  direc- 

t i o n  and then  towards  the  center   of   the   cavi ty  as t h e  Reynolds number  was in-  

creased.  Kawaguti   did  not  observe  the  corner  eddies.  Mills repor ted  them 

for a s p e c t   r a t i o   o f  1 . 0  and  Burggraf  observes  them  for a l l  Reynolds  numbers 

for t h e  same a s p e c t   r a t i o .  

Mills compared the   t heo re t i ca l   r e su l t s   w i th   pho tographs   o f   f l ow  pa t t e rns .  

There was a good correspondence  between  theoret ical   and  experimental   resul ts  

f o r   a s p e c t   r a t i o   o f  0 .5 .  When t h e   a s p e c t   r a t i o  w a s  1 . 0 ,  the  experiments   did 

not  show t h e  two corner  eddies which  he  had p r e d i c t e d   t h e o r e t i c a l l y .  For 

t h e   a s p e c t   r a t i o   o f  2 .0 ,  a second  vortex d i d  not   appear   in   the  experiment  

anywhere i n   t h e   r a n g e  0 5 N 5 100.  (However, it appeared a t  N 1000.) 

These  discrepancies were a t t r i b u t e d   t o   t h e   d i f f i c u l t y   o f   r e a l i z i n g   i n   t h e  ex- 

periment a.11 the   condi t ions   necessary  t o  produce a flow  with  such a weak vor tex .  

Re Re 



B u r g g r a f   n o t i c e d   t h a t   t h e   v o r t i c i t y   d i s t r i b u t i o n  was symmetric a t  

NRe = 0. At NRe = 100, a very  small inv i sc id   co re  had  developed  around  the 

vo r t ex   cen te r ,   wh i l e  a t  N = 400, t he   i nv i sc id   co re   had  grown t o  a diameter 

about 1/3 t h a t   o f   t h e   c a v i t y .  The corner   eddies  were of   t r iangular -shape  

and they  had a diameter   of   about   ten  percent   that   of   cavi ty  a t  N = 0. 

However , at  NRe = 400, t h e  downstream  eddy  had  grown t o  about 1/3 t h e   d i a -  

meter of  the  cavity,   whereas  the  upstream  eddy w a s  r e l a t i v e l y   u n a f f e c t e d  by 

t h e  Reynolds  number. The s t r e n g t h   o f   t h e   f l o w   f i e l d   ( t h e  maximum value  of 

t he   s t r eam  func t ion   i n   t he   cav i ty )  was pract ical ly   independent   of   the  Rey- 

nolds number. 

Re 

R e  

Burggraf   acqui red   ana ly t ica l   so lu t ion   for   the  high-Reynolds-number 

limit ( N  -f m)  w i t h   t h e   s t i p u l a t i o n  of   Batchelor 's   uniform  vort ic i ty   model .  

The problem was solved by the   u se   o f   t he   f i n i t e   Four i e r   t r ansco rm.  The 

r e s u l t   b r i n g s   o u t   t h e  most s e r ious   f a i lu re   o f   t he   un i fo rm  vo r t i c i ty   mode l ,  

namely, the   so lu t ion   does   no t  show the  exis tence  of   secondary  corner   eddies .  

R e  

Pan  and  Acrivos7  obtained  numerically  the  creeping  f low  solutions  for 

cav i t i e s   hav ing   a spec t   r a t io s   f rom 0.25 t o  5 .0  us ing   the   re laxa t ion   procedure  

employed  by Burggraf.  The f low  in   t he   p r imary   vo r t ex   ( t he  one n e x t   t o   t h e  

moving wall)  remained  unaffected  by  the  location  of  the  bottom w a l l  as long 

as t h e   a s p e c t   r a t i o  was g r e a t e r   t h a n  2.0.  For a s p e c t   r a t i o   o f  5.0 t h e  

f i rs t  t h r e e   v o r t i c e s  had a l e n g t h   t o   w i d t h   r a t i o   e q u a l   t o  1 .40 .  The analy- 

t i c a l   v a l u e   o f   t h i s   r a t i o   p r e d i c t e d  by  Moffatt' w a s  1.39. 

According t o  Pan  and  Acrivos,   for a square   cav i ty ,   even  a g r i d  s i z e  as 

small as 0.01 w a s  still t o o   c o a r s e   t o   r e v e a l   t h e   d e t a i l e d   s t r e a m l i n e   p a t t e r n  

ins ide   the   corner   eddies ,   a l though it was more than   adequa te   fo r   t he   so lu -  

t i o n   i n   t h e   c o r e   o f   t h e   c a v i t y .  The so lu t ion   i n   t he   co re   r ema ined   p rac t i -  

ca l ly   una f fec t ed   by   t he   changes   i n   t he   s t ruc tu re   o f   t he   co rne r   vo r t i ce s .  So 
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an  improved  solution was coaputed after convergence i n   t h e   c o r e  w a s  assured, 

by subd iv id ing   t he   r eg ion   a round   t he   co rne r s   i n to   f i ne r  meshes  and i t e r a t i n g  

fur ther .   This   p rocess   o f   subdiv is ion  w a s  repea ted   severa l   t imes .  It d i s -  

closed a sequence  of  eddies  which  were  amazingly similar and  symmetric  with 

r e s p e c t   t o   t h e   d i a g o n a l  of t he   squa re   cav i ty .  The r e l a t i v e   s i z e s  and 

s t r eng ths   o f   t hese   co rne r   vo r t i ce s  were in   excel lent   agreement   with  analy-  

t i c a l   r e s u l t s   o b t a i n e d   b y M o f f a t t  . The corner   vort ices   occupied  only  about  

0.5 percent of t h e   t o t a l  area of   the   square   cav i ty .  

8 

An experimental  program was undertaken  by  Panand  Acrivos  to  study  the 

basic   features   of   the   s teady  f low  for   different   Reynolds   numbers .  They  con- 

s ide red  a c a v i t y  of a s q u a r e   s e c t i o n   i n   t h e   h o r i z o n t a l   p l a n e  and with  vary- 

i ng   dep th   (he igh t ) .  They  were  not ab le   to   avoid   the   p resence   o f   th ree-  

d imens iona l   f l u id   mo t ions   nea r   t he   fou r   i n t e r sec t ions  of t h e   v e r t i c a l   s i d e s .  

However, these  motions d i d  not   extend  into  the  mid-sect ion,  where t o  a l l  

appearances  the  f low was indeed  two-dimensional. 

Pan  and  Acrivos  found t h a t   f o r  a s q u a r e   c a v i t y   t h e  downstream  corner 

vo r t ex   i nc reased   i n   s i ze  from N = 0 t o  NRe= 500, i n   e x c e l l e n t  agreement 

wi th   Burggraf ' s   numer ica l   resu l t s .  With a f u r t h e r   i n c r e a s e  i n  the  Reynolds 

nynbe r ,   t h i s   vo r t ex   began   t o   sh r ink   s lowly ,   un t i l  a t  N = 2700 it r e t r e a t e d  

once  again  into  the  immediate  neighborhood  of  the  cavity  corner.  Hence, 

Pan  and  Acrivos  concluded  that ,   for a cav i ty   o f  a f i n i t e   r a t i o ,   t o  a l l  in- 

t e n t s  and  purposes   the  s teady  f low  in   the limit N + m w i l l  cons is t   o f  a 

s ing le   i nv i sc id   co re   o f   un i fo rm  vo r t i c i ty   w i th   v i scous   e f f ec t s   be ing  con- 

f ined   t o   i n f in i t e s ima l ly   t h in   boundary   l aye r s   a long   t he  walls. 

R e  

Re 

Re 

A c a v i t y   w i t h   a s p e c t   r a t i o   1 0 . 0  was used as a model f o r  a cavi ty   having 

i n f i n i t e   d e p t h .  A s  w i th   f i n i t e   cav i t i e s ,   t he   p r imary   vo r t ex   sh runk  a t  f i r s t  

as N was increased  f rom  the  creeping  f low  l imit .  Beyond NRe= 800 t h e  Re 
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vortex  grew,  with i t s  size becoming  proportional t o  N ?5 at Reynolds  numbers 

between 1500 and 4000, beyond  which p o i n t   i n s t a b i l i t i e s   b e g a n   t o  s e t  i n .  It 

was observed   tha t   the   core   o f   the   p r imary   vor tex   never   a t ta ined   an   inv isc id  

state as N + m .  Hence, it w a s  concluded   tha t   for  a c a v i t y   h a v i n g   i n f i n i t e  

depth ,   the   v i scos i ty   and   convec t ion   p lay   an   equal ly   impor tan t   ro le   in   the  

momentum t r a n s f e r .  

R e  

R e  

O'Brien' h a s   a l s o   t a c k l e d   t h e  same problem f o r   a p s e c t   r a t i o s   o f  0.5,  

1 .0  and 2.0,  and  for   the  range  of   Reynolds  number from 0 t o  200. She de- 

te rmined   the   numer ica l   so lu t ion   of  a l i n e a r i z e d  form  of   the  Stokes  equat ion,  

a f o u r t h   o r d e r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n   f o r   t h e   t w o - d i m e n s i o n a l  stream 

funct ion .  The r e s u l t  was appl ied  to   approximate  the  Reynolds  number solu- 

t i o n  and  approximations were i t e r a t e d   t o  a more a c c u r a t e   s o l u t i o n   u n t i l  

t h e   f i n a l  answer s a t i s f i e d   t h e   c o m p l e t e  stream funct ion  equat ion.   This   pro-  

cedure   d id   no t   r equ i r e   any   i t e r a t ion   fo r  N = 1, however, it demanded an 

increas ing  number o f   i t e r a t i o n s  as Reynolds number was increased .  If t h e  

mesh was t o o   l a r g e ,   t h e   i t e r a t i o n s   d i d   n o t   c o n v e r g e   s a t i s f a c t o r i l y   a n d  

osci l la ted  between two c lose   s e t s   o f   va lues .   O 'Br i en   p re fe r r ed   no t   t o  

solve  the  coupled stream func t ion  and v o r t i c i t y   e q u a t i o n s  s o  as t o   a v o i d  

determining  the  boundary  values   of   vort ic i ty .   She  explains   that   in  many 

cases   t he   f a i lu re   t o   ge t   conve rgence   has   been   t r aced   t o   t hese   boundary   va lues .  

Dur ing   t he   cour se   o f   t h i s   s tudy   t he   au tho r  came a c r o s s   t h e   d o c t o r a l  

t h e s i s  of Brandt''. T h i s   t h e s i s  i s  w r i t t e n   i n  Hebrew (unknown t o   t h i s   a u t h o r )  

wi th   an   abs t rac t   in   Engl i sh .   Brandt   cons idered   an   in f in i te   symmetr ic   channel  

with  fully-developed  laminar  f low a t  t h e   e n t r a n c e  as w e l l  as e x i t  and  having 

recessed  walls. H e  s o l v e d   t h e   f o u r t h - o r d e r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n   f o r  

the  two-dimensional stream funct ion .  H e  worked wi th   a spec t   r a t io s   o f  0.25, 

0 . 5 ,  1 . 0  and 1 . 5 .  He a l s o   t r e a t e d   a s p e c t   r a t i o s  much less than  1 . 0 ,  w i th  

a view t o   i n v e s t i g a t e  sudden  expansions  and  contractions i n   c h a n n e l s .  

Re 
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Brand t   conc ludes   t ha t   t he   f l ow  in  a s t r a igh t   channe l   p roduces  a vor tex  

f l o w   i n  any r e c t a n g u l a r   r e c e s s   i n   t h e   c h a n n e l  walls; i f  t h e   r e c e s s  i s  deep 

enough, a main vo r t ex  i s  formed. H i s  numerical   procedure  did  not   give  the 

c o r n e r   e d d i e s   f o r   a s p e c t   r a t i o s  o f  0 . 5 ,  1.0  and 1.5. The cons tan t  stream- 

l i n e   p l o t s   f o r   a s p e c t   r a t i o   o f  1 . 0  show t h a t   t h e   d i v i d i n g   s t r e a m l i n e  i s  con- 

cave f o r  f = 0 (based  on  the  height   of   the   channel   and  the  average  veloci ty)  

and  convex f o r  k = 100. 

Re 

R e  

While these   i nves t iga t ions   o f   cav i ty   f l ow  con t r ibu ted   subs t an t i a l ly  

towards a be t t e r   unde r s t and ing   o f   t he   vo r t ex   f l ow,   t he  phenomenon of  flow 

separa t ion   coupled   wi th   the   format ion   of   vor tex   has   no t   been   ana lyzed   in  

d e t a i l .  It i s  w e l l  known t h a t  problems  wherein  the  vortex  motion i s  generated 

by t h e   a c t i o n   o f   t h e   s h e a r  stress of   an  outer   s t ream,  Jrhich  separates  and 

r e a t t a c h e s  i t s e l f  aga in ,  are of   f requent   p rac t ica l   occurence .  The e f f e c t   o f  

t he   p rec i se   na tu re   o f   t he   d iv id ing   s t r eaml ine   canno t   s a fe ly   be   i gnored ;   t ha t  

i s ,  the   d iv id ing   s t r eaml ine   canno t   be   r ep laced   by  a ho r i zon ta l  f l a t  p l a t e  

a c r o s s   t h e   t o p   o f   t h e   c a v i t y   i n  most of  the  problems. A t  t h e  same t ime,   sharp 

c o r n e r s   i n   t h e   f l o w   f i e l d  may be   s ingu la r   po in t s .  The present  work e s s e n t i a l l y  

dea ls   wi th   numer ica l   inves t iga t ion  of  f low  separat ion  and  the  formation  of  

vor tex   d r iven   by   an   ex terna l  stream. 
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CHAPTER I1 
NUMERICAL FORMULATION 

I n   t h i s   c h a p t e r   t h e   b a s i c   e q u a t i o n s  of  hydrodynamics,  suitable fo r  

the  problem  of  cavity  f low are considered  along  with  appropriate  boundary 

and i n i t i a l   c o n d i t i o n s .   S t a r t i n g   w i t h   t h e   e q u a t i o n s   o f  mass and momentum 

ba lance   for  a Newtonian f luid,   the   assumptions  necessary for  obtaining 

useful   forms  of   these  equat ions are i n t r o d u c e d .   L a t e r ,   t o   g e t   t h e  numeri- 

ca l   so lu t ion   o f   t he   p re sen t   p rob lem,   t he   f l ow  f i e ld  w a s  subdivided  by a 

g r i d   i n   t h e   h o r i z o n t a l  and v e r t i c a l   d i r e c t i o n s  and a t  each  nodal   point   the  

governing  different ia l   equat ions  were  represented  by  difference  equat ions.  

2 . 1  Governing  Differential   Equations 

The p a r t i a l   d i f f e r e n t i a l   e q u a t i o n s  of   hydrodynmics  for   constant   vis-  

c o s i t y  may be  expressed as 

- + v . (pu )  = 0 a P  
a t  

- 

( c o n t i n u i t y  o r  mass balance)  

(momentum balance)  
where, 

t = time 

p = d e n s i t y  

u = v e l o c i t y  
- 

- 
- F = body f o r c e   p e r   u n i t  mass 

p = pres su re  

l~ and A = t h e   f i r s t  and   second  coef f ic ien ts   o f   v i scos i ty  
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The two c o e f f i c i e n t s  of v i s c o s i t y   a r e . r e l a t e d   b y  

K i s  u s u a l l y   r e f e r r e d   t o  as t h e   c o e f f i c i e n t  of bu lk   v i scos i ty .  It i s  
I 

customary’’ t o  assume t h a t   S t o k e s   r e l a t i o n  

i s  a t  l e a s t   a p p r o x i m a t e l y   v a l i d .   F u r t h e r ,   t h i s   a n a l y s i s  i s  r e s t r i c t e d   t o  

incompressible  f luids.   These  assumptions when a p p l i e d   t o   e q u a t i c n s  (2 .1)  

and ( 2 . 2 ) ,  y i e i d  t h e  fo l lowirg   equat ions  : 

where 

v = - i s  the   k inemat ic   v i scos i ty- .  u 
P 

The c o n t i n u i t y  and momentum equat ions  with  appropriate   boundary  condi-  

ti’ons form a complete set  of   equat ions for de te rmin ing   t he   p re s su re  and t h e  

v e l o c i t y   f i e l d s .   G e n e r a l l y ,  a pressure  equat ion  produced  by  taking  the 

divergence of  t h e  momentum equat ion   (2 .4)  i s  used   ins tead   of   the   cont inui ty  

equat ion.  The pressure   equat ion  i s :  

Another  formulation  of  the  equations of hydrodynamics may be  obtained 

by   e l imina t ing   pressure  from t h e  momentum balance  equation  and a t  t h e  Same 

time removing the   cont inui ty   equat ion .   This   can   be   a f fec ted   by   in t ro-  
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duction of the  vorticity  equation  and  the  stream  function  concept.  Taking 

the curl of (2.4) and  making  use of (2.3) we  get  the  vorticity  equation: 

where  the  vorticity is defined  by 

It is  not  convenient to calculate  the  components  of  the  velocity  vector u 
from (2.7). In order  to  circumvent  this  difficulty,  the  concept of stream 

function is  introduced. 

Aziz12  has  carried  out  a  numerical  study  of  cellular  convection  using 

both  of  the  above  approaches to determine  the  velocity  field  for  a  two- 

dimensional  problem. He concludes  that  the  first  approach  (momentum  and 

pressure  equations)  yields  less  accurate  results  than  the  latter.  The 

difficulty  arises  from  the  highly  non-linear  nature  of  the  pressure  equa- 

tion and  the  coupling  due to pressure  in  the  momentum  equations.  Therefore, 

in this  study  the  vorticity  equation  and  the  stream  function  concept  are  used. 

The problem  was  formulated  in  Cartesian  coordinates , x ,y,z , with  the 

corresponding  velocity  components u , v ,  w and  vorticity  components < , < , q  

(Fig. 2). For  two-dimensional  flow  the  vorticity  components  in  this  coor- 

dinate  system  are 

< = "  aw 
ax 
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Fig. 2. Coordinate  System  and  Velocity  Notation 

and the  stream  function, $ , is  defined  by 

v =  2 ax 

Introduction  of  these  definitions  of  velocities  in  the  expression  for 0 in 

( 2.8) gives 

(stream  function  equation) 

(2.10) 

In addition to equation (2.10), the z-component of the  vorticity  equation 
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is used.   This   equat ion  neglect ing  body  forces  i s  

2 2 

a t  

( uns t eady- s t a t e   vo r t i c i ty   equa t ion )  

For s teady  s ta te  t h e  above   equat ion   reduces   to  

2 2 

( v ( > + > )  - ( u k + v k ) ) . =  

( s t eady- s t a t e  

0 

v o r t i c i t y   e q u a t i o n )  

(2.11b) 

The stream func t ion  and vort ic i ty   equat ions  with  appropriate   boundary  and 

i n i t i a l   c o n d i t i o n s   f o r m  a complete set  of   equa t ions   for   de te rmining   the  

v e l o c i t y   f i e l d  . 

.. 2.2 . .  Boundary - . . .. ~~ and . " I n i t i a l   C o n d i t i o n s  f o r  t h e  Governing  Different ia l   Equat ions 

The s teady  s ta te  problem i s  solved  with  the  help  of   equat ions (2 .10)  

and   (2 .11b) .   S ince   these   equat ions   a re   e l l ip t ic ,   the   boundary   condi t ions  

must  be  specified on a l l   t h e   b o u n d a r i e s .  The en t rance  and e x i t  of the   channel  

a r e   a t  an   i n f in i t e   d i s t ance   f rom  the   cav i ty ;   t he re fo re ,  it i s  assumed t h a t  

a t  these   boundar ies   the   normal   der iva t ives   o f  a l l  t h e   f u n c t i o n s   a r e   z e r o .  

( A l t e r n a t e l y ,   t h e   a n a l y t i c   v a l u e s   o f   t h e   f u n c t i o n s   c a n   b e   d e f i n e d .  However, 

pas t   expe r i ence   i nd ica t e s   t ha t   such   ana ly t i c   va lues  may be  incompatible  with 

the   numer i ca l   so lu t ion  of t h e   f i n i t e   d i f f e r e n c e   e q u a t i o n s   f o r   t h e   i n t e r i o r . )  

No s l i p   c o n d i t i o n  i s  assumed on the  remaining  boundaries .  Hence, a l o n g   t h e  

moving wall t h e   v e l o c i t y   o f   t h e   f l u i d   e q u a l s   t h e   v e l o c i t y   o f   t h e . w a l 1 ,  

whereas,   on  the  other wall  t h e   f l u i d   v e l o c i t y  i s  zero.   Mathematical ly   these 

condi t ions   can  be expressed as fol lows:  
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I. x =.+a = o  (2.12) 

I = o  pc x = ? a  

$(X, 0 )  = $m 

where Qm is the   va lue  of stream  f’unction at t h e  moving wall. 

L 

s u b j e c t   t o  

where  u i s  t h e   v e l o c i t y  of t h e  moving wall m 

$(x, H + H = 0 
- - < X ~ -  L L 

e 2 -  2 

2 2 

( 2 . 2 0 )  

(2.21) 

(2.22) 
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In   equa t ions   (2 .19 )   t o   (2 .22 )   t he   s econd   de r iva t ives  are evaluated  sub- 

j e c t   t o   t h e   c o n d i t i o n   t h a t   t h e  f irst  d e r i v a t i v e s ,   t h a t  i s ,  t h e   v e l o c i t i e s  

a re   ze ro .   (Th i s   co r re sponds   t o   t he  no s l ip   assumpt ion . )  

The numerical  procedure w a s  v a r i f i e d  by  reproducing  Burggraf 's   resul ts  

fo r  the   p ro to type   problem  (F ig .   3 )   wi th   the   boundary   condi t ions   (2 .23)   to  

(2.25)  given  below  and  again  with  the no s l ip   assumpt ion .  

$(x, 0 )  = 0 (2 .24)  

(2 .25)  

(2.26) 

L 

(2 .28)  

The formation  of  the  vortex was s tudied by solving  the  s t ream  funct ion 

equation (2 .10)  and the   uns t eady- s t a t e   vo r t i c i ty   equa t ion   (2 .11a )  for t h e  

prototype  problem. The  boundary c o n d i t i o n s   a r e   t h e  same as equations  (2.23) 

t o   ( 2 . 2 8 )  for a l l  time t .  I n   a d d i t i o n   t o   t h e s e ,  i n i t i a l  condi t ions  are   speci-  

f i e d  i n  t h e   i n t e r i o r   o f   t h e   e n t i r e   f i e l d   b e c a u s e   e q u a t i o n   ( 2 . 1 1 a )  i s  pa rabo l i c  

w i th   r e spec t   t o   t ime .  

17 



Fig .  3. Defini t ion  of   the  Prototype  Problem 

2.3 Nondimensional  and  Transformed  Equations 

The equat ions are made d imens ionless   us ing   the   l ength   o f   the   cav i ty ,  L ,  

and t h e  stream func t ion  a t  t h e  moving w a l l ,  JI as reference  dimensions.  m y  

x = -  * x  
L 

y = x  * 
L 

' * '  = -  
'm 

* v = -  L v  
'm 

* L2 = -  
'm 

rl 

(2.31) 

* JIm t = - t  

18 



" 

where the  nondimensional   quant i t ies  a re  des igna ted   by   as te r i sks .  

The nondimensional  equations are 

where 

By d e f i n i t i o n  

and 

Also, f o r  a Couette  f low 

u = u (1 - $1. m 

Hence, 

"InH Gm = - 
2 

if 
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Note 

U 
JI E- f o r   t h e   p r o t o t y p e  problem m 2  

Therefore ,  

u H  m 
Nke - 2v 
" 

The nondimensional  equations may be t ransformed  f rom  the  physical  

* *  
p lane   (x  , y ) t o  any new plane  ( z ( x  , y*) as fo l lows .  

* *  

and 

* 
- N i e  ( U  * -7 d z  a + v* 2)) Q* = 0 

dx az 

\ 

(2.38'0) 

The equat ions  were transformed so t h a t   t h e   i n f i n i t e   c h a n n e l   i n   t h e  

phys ica l   p lane   can   be   cont rac ted   to  a f i n i t e   l e n g t h   i n   t h e   t r a n s f o r m e d   p l a n e .  

A t  t h e  same time the   t r ans fo rma t ion  was s o  chosen  that   the  neighborhood  of 

each  of  the convex corners  was expanded.  Thus a un i fo rm  g r id   i n   t he   t r ans -  

formed  plane i s  e q u i v a l e n t   t o  a f i n e r   g r i d   n e a r   t h e  convex  corners   in   the 

phys ica l   p l ane .   Th i s   f ac i l i t a t e s   t he   s tudy   o f   t he   r ap id   changes   i n   t he   f l ow 

20 



f i e l d   n e a r   t h e s e   c o r n e r s .  The transformation  chosen i s  def ined  by 

* 1 + t anh  a ( X  + 0 . 5 )  
* 

z =  1 + tanh  (0 .5a)  

where 'a '  i s  a cons tan t .   This   t ransformat ion  maps -m c x < 0.0 i n t o  
* 

0 - 0  < z < 1 . 0 ,  w i th  a p o i n t   o f   i n f l e c t i o n  a t  x = - 0.5  which i s  t h e  up- 
* -x 

stream corner .  

The func t ion   can   be   ex tended   for   the  domain 0 < x < m by assuming 
* 

t h a t  it i s  antisymmetric  about z = 1 . 0 ,  t h a t  i s  
Q 

t 
1 - f ( x  ) = f ( - x  ) - 1 

* 
(2.40) 

The mapping func t ion   t hus   de f ined   (F ig .  4 )  and i t s  f i rs t  d e r i v a t i v e   a r e  

continuous.  However, the   second  der iva t ive   has  a f i n i t e  jump d i s c o n t i n u i t y  

with  an  average  value of  zero at x = 0.  
Q 

280- 

Z* 

0,5 I .o 
X* 

Fig.  4. The Mapping Function 
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Finally,  the  boundary  conditions  listed in the  previous  section  are 

rewritten  in  the  nondimensional  and  transformed  forms.  Equations (2.12) 

to (2.22) for the  channel  flow  are  considered  first. 

” 

az 1 
and I at  inlet  and  exit 

* 
3” 

* - 0  J 
dz 

dx 

* 
Note, - * - 0  - x = ? m  

’ (z , 0) = 1.0 
* *  

subject to 

$ ( z  , H  = 0 
* *  * x. 

o < _ z  zcl 

(2.41) 

(2.42) 

(2.45) 

* * 
zc2 5 z 5 2.0 

* 
where  z  and z are  the  values  of  the  transformed  coordinates  of  the  up- 

* 
cl  c2 

stream  and  downstream  corners,  respectively. 
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* *  * * * * * 
$ ( z , H  + H e ) =  0 z 5 z 1. zc2 c.1 

* *  * 
J, ( Z c p  Y 1 = 0 

* * * 
H < y  < H e  

* * * 
H < y  < H e  

* * 
o < z   < z  cl 

* * 
z < z < 2.0 c2 

Note 

d z  

dx 

2 *  

7 = o  x = 2 0.5 
x. 

(2 .48)  

I n  a similar manner t h e  boundary  conditions f o r  the  prototype  problem 

are nondirnensionalized  and  transformed. The same mapping function  (equa- 

t i o n   ( 2 . 3 9 ) )  w a s  employed.  Equations  (2.23) t o   ( 2 . 2 8 )  became 
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* *  * 
J, bci, y = 0 (2.53a) 

* *  2 *  

n ( z , o ) =  224 * 
aY 

* *  * 2 *  

n (z , He ) = -  * 
aY 

2.5 Method  of  Solution 

Aziz12  has  reviewed  the  numerical  methods  applied to viscous hydro- 

dynamics  problems  similar to the  one  considered  here.  According  to  him 

alternating  direction  implicit  methods  (A.D.I.)  are  very  effective  in  solving 

non-linear  parabolic  partial  differential  equations. He also  solved  a 

three-dimensional  natural  convection  problem  with  the  A.D.I.  method.  Hence, 

in this  work  the  unsteady  state  vorticity  equation  is  treated  similarly. 

As  mentioned  earlier,  Mills  solved  the  elliptic  equations  with  Liebmann's 

method.  Burggraf  and  Kawaguti  used  a  slight  modification of Liebmann's 

technique. In this  work  the  steady  state  solution  follows  the  treatment of 

Lavan  and  Fejer13,  which is also  a  modification  of  Liebmann's  method. 

24 
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The f l o w   f i e l d  i s  d i v i d e d   i n   r e c t a n g u l a r   g r i d   i n   t h e   t r a n s f o r m e d  

p lane ,   F ig .  5 ,  and t h e   f i n i t e   d i f f e r e n c e   e q u a t i o n s  are s o l v e d   f o r   t h e   v a l u e s  

of the   dependent   var iab les  at t h e   n o d a l   p o i n t s .  

i - l  *L 
4 

i 
"AZ*"- 

i + l  

j - l  j j + I  

Fig .  5 .  Grid  Notation 

Consider f i r s t  the   numer i ca l   so lu t ion  of t h e   s t e a d y - s t a t e   v o r t i c i t y  and 

stream funct ion   equat ions .   In   the   s t ream  func t ion   equat ion   the   der iva t ives  

are subs t i t u t ed   by   cen t r a l   d i f f e rences .   In   t he   vo r t i c i ty   equa t ion   t he   s econd  

o rde r   de r iva t ives   a r e   r ep laced   by   cen t r a l   d i f f e rences ;   t he  f i r s t  order   der iva-  

t i v e s  are approximated by backward or forward  differences  depending on whether 

t he   coe f f i c i en t s   o f   t hese   de r iva t ives   a r e   pos i t i ve  or negat ive ,  as explained 

by Lavan  and Fe je r .  The f i n i t e   d i f f e r e n c e  form  of equations  (2.37)  and  (2.38b) 

a r e  : 

* 

i , j -1  2.0 i+i , j 
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- ( 2 . 0  + 2. 

{( G Az 

+( (5 * 

Az 
J 

( 2 . 6 0 )  

where 

n = t h e   l e v e l  of  i t e r a t i o n  

fill,* = overre laxa t ion   parameter  

AY 
* I  

z = t h e  f i rs t  d e r i v a t i v e  of t r a n s f  orm a t i o n  

z = the   second  der iva t ive   o f   t ransformat ion  
* '1 

c r = &v*Ay* 

* 
"* = 1.0/(2.0 + 2.0  (% Z 8 j 2  + ( c  + 2.0  c2)  cr + ( 2 . 0  c 4  + c s )  c z )  

Az 1 
c = - 1 a n d c   = O i f c r < O  

c = O a n d c   = 1 i f c  > O  

c4 = - 1 a n d c   = O i f c Z < O  

c4 = 0 and c = 1 i f   c z  > 0 5 
c = c + c  

1 2 

1 2 r 

5 

3 1 2  

5 c6 = c4 + c 

These f i n i t e   d i f f e r e n c e   e q u a t i o n s  ( 

with  the  appropriate   boundary  condi t ions 

(2.59)  and ( 2 . 6 0 ) )  were  solved  along 

. I n i t i a l   v a l u e s  were a s s i g n e d   t o  
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all nodal  points  and  improved  values  of  these  functions were obtained 

by successively  scanning  over  the gr id   po in ts   once   wi th   each  of the   equat ions .  

The scanning  proceeded i n  t h e   d i r e c t i o n   o f   i n c r e a s i n g  z and  decreasing y . * * 

This   procedure was r e p e a t e d   u n t i l   t h e  m a x i m u m  e r r o r   ( r e s i d u e )   i n   t h e   f i e l d  

was smal le r   than  some p resc r ibed   va lue .  

used 

Now, c o n s i d e r   t h e  A . D . I .  method fo r   equa t ion   (2 .38a ) .  The procedure 

is a pe r tu rba t ion  of t h e  Crank-Nicholson  scheme  which i s  def ined as 

2 

(2.61) 

.where t h e  second  der ivat ive i s  def ined  a t  t i m e   l e v e l  m and  where 

This  scheme r e q u i r e s   a n   i m p l i c i t  method f o r   t h e   s o l u t i o n   o f   f i n i t e   d i f f e r e n ; : ( .  

equa t ions .  The per turbed  technique employed here  was formulated  by  Douglas- 
! L  

f o r   l i n e a r  and  mildly  nonl inear   parabol ic   equat ions.  He has  shown t h a t  f o r  

a c u b i c   r e g i o n   h i s  method i s  s t a b l e   f o r  any   pos i t ive  time s t e p .  However, 

an   exac t   s t ab i l i t y   ana lys i s   fo r   nop l inea r   equa t ion  i s  l ack ing .  

Before  going  into  details   of  the  numerical   method,  equation  (2.38a) i s  

r e w r i t t e n   i n  a different   form  and some u s e f u l   q u a n t i t i e s   a r e   d e f i n e d  

* 2 *  2 *  * 

where 

( 2 . 6 2 )  
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1 

Let 

z 2Az 
* 

Y Y Y 

*m+ 1 
The numer ica l   so lu t ion  of equation  (2.62)  can be obtained a t  t 

from t h e  known s o l u t i o n  a t  t by 
* 
rn 

*m+l * m + l  
where { i s  t h e  f i r s t  e s t i m a t e   o f   v o r t i c i t y  a t  t . The f i n a l   v a l u e  

i s  calculated  f rom 

(2 .64)  

Rearranging  equation  (2.631, 
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Subs t r ac t  ing   equat ion  (2.63) from equat ion ('2.64) and  rearranging 

Equations (2.65) and (2.66) r e d u c e   t o  

2.0 NAe 

Az  2.0  Az i ,  j + l  Az A t  i , j  

C *m 

2.0Az i , j + l  

(2.66) 

2.0 NAe 
- 

i , j  (2.67) 
Az A t  

29 



2.0 N i e  
.2.0 * ) n*m+l 

2. OAy A t  i ,j 

Each  of the  above two equa t ions   i nvo lves   t he   so lu t ion   o f  a t r id iagonal   sys-  

tem o f   l i nea r   a lgeb ra i c   equa t ions .  

The t ime  dependent   vor t ic i ty   equa t ions-   ( (2 .67)   and   (2 .68) )   and   the  

stream  function  equation  (2.59)  along  with  the  appropriate  boundary  condi- 

t i o n s  were  solved t o   d e t e r m i n e   t h e   t r a n s i e n t   s o l u t i o n  for t he   p ro to type  

problem. A t  a l l  nodal   po in ts   in i t ia l   va lues   were   ass igned .   These   va lues  

were e i t h e r   f o r  t = 0 or f o r  t . In   t he   fo rmer   ca se   t hey  would be  zero 
8 K m  

and i n   t h e  l a t t e r  case   they  would be   t he   p rev ious ly   ca l cu la t ed   va lues .  The 

v o r t i c i t y  was f i r s t  ca l cu la t ed  on the   boundar i e s   and   t hen   i n   t he   i n t e r io r  

by t h e  A . D . I .  method. The s t ream  func t ion   equat ion  was completely  relaxed 

us ing   t he   va lues  of  v o r t i c i t y  a t  t h e  new t ime.   This   procedure was repea ted  

for a des i r ed  number of time l e v e l s .  

The v o r t i c i t y  a t  the   boundar i e s   and   t he   coe f f i c i en t  of  t h e  f irst  order  

terms in   the   vor t ic i ty   equa t ion   a lways   l agged   one  time s t e p   b e h i n d   t h e   r e s t  
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of t h e   f i e l d .  However, a l l  t h e   v a l u e s   i n   t h e   f i e l d   m i g h t   b e  i terated a t  

t h e  same time s t e p   u n t i l   t h e   b o u n d a r y   v a l u e s   o f   v o r t i c i t y  d id  no t  change 

more t han  a p resc r ibed  l i m i t .  This  would make t h e  computer t i m e  and cos t  

p r o h i b i t i v e ;  as a r e s u l t ,   t h i s   r e f i n e m e n t   i n   t h e   s o l u t i o n  w a s  not  considered. 

A s  ment ioned   be fo re ,   vo r t i c i ty  a t  t h e   s o l i d   b o u n d a r i e s  was ca l cu la t ed  

from the   second  der iva t ive   o f  stream funct ion .  The stream func t ion  w a s  ex- 

panded  about the  boundary  under   considerat ion  in  a Taylor series, and t h e  

appropr ia te   va lue   o f   the   ve loc i ty  w a s  s u b s t i t u t e d   f o r   t h e  f i rs t  d e r i v a t i v e s .  

The r e su l t i ng   expres s ion  w a s  s o l v e d   f o r   t h e   s e c o n d   d e r i v a t i v e   t o   g e t  i t s  

f i n i t e   d i f f e r e n c e  form.  However, fo r   t he   channe l   f l ow at  t h e   e n t r a n c e  and 

t h e   e x i t   t h e  no rma l   de r iva t ives   o f   vo r t i c i ty  as well as s t ream  funct ion 

were assumed t o  be   zero .   These   condi t ions   a re   enforced   by   t rea t ing   the  

boundary  points as i n t e r i o r   p o i n t s  and r e f l e c t i n g   t h e   v a l u e s   o f   t h e   f u n c t i o n  

a t  t h e   i n t e r i o r   p o i n t s   ( t h e   o n e s   n e x t   t o   t h e   b o u n d a r y )   t o   t h e   p o i n t s   o u t s i d e  

the  boundary. 
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CHAPTER I11 
RESULTS AND DISCUSSION 

It is  generally  desirable  to  check  the  validity of a.numerica1 pro- 

cedure  by  comparison  with  some  known  results.  Therefore,  first  the  proto- 

type  problem  was  solved  for  creeping  flow in a square  cavity.  The  results 

are  presented  as  contours of constant  stream  function  (i.e.  as  streamlines) 

along  with  Burggraf's  solution  for  the same case  (Fig. 6). (In  the  present 

work  the  contours  of  constant  streamlines  were  obtained  by  graphical  inter- 

polation  whereas  Burggraf  employed  numerical  interpolation.)  Good  agreement 

is  indicated in Fig. 6 in  the  entire  flow  field  with  the  exception of the 

region  near  the  center of the  vortex,  where  the  maximum  values  of  the  stream 

function  in  the  two  cases  differ  by 4.3 per  cent.  This  variation  is  probably 

due to the  coarser  grid (11 x 13 points)  and  the use of  one-sided  differences 

for first  derivatives  as  compared  with  Burggraf's  finer  grid ( 5 0  X 5 0 )  and 

central  differences.  (The  one-sided  differences  were  chosen  because  the 

stability  analysis  by  Lavan  and  Fejer  shows  the  central  differences to be 

unstable for  numerical  solutions  of  channel  flow.) 

After  partially  confirming  the  validity  of  the  numerical  procedure,  it 

was  utilized  in  the  main  investigation  of  the  flow  in  a  cavity  along  the  wall 

of  a  channel.  The  grid  size  was 0.1 and 0.0625 in  y  and z -direction,  respec- 
* * 

tively.  The  stream  function  and  vorticity  values  were  relaxed  until  the 

residues  were  smaller  than 1.5 x and 2.5 x 10 , respectively.  The -4  

height of the  channel  and  the  length  of  the  cavity  were  always  kept  the  same 

but  the  height of the  cavity  was  varied to  obtain  the  aspect  ratios  of 0.5  

1.0 and 2.0. 

It should  be  noted  that  in  the  prototype  problem  the  boundary  layer 

thickness  along  the  walls of the  cavity  becomes  thinner  as  Reynolds  number  is 
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A BURGGRAF  (REF, 3) 

q: =-0,1911 FOR  PRESENT  WORK 

t,bi ~ - 0 ~ 2  FOR  BURGGRAF’S WORK 

FIGURE 6. COMPARISON WITH BURGGRAF, N R i  =O,ASPECT RATIO= 1.0. 



increased .   and   the   p roper   representa t ion  of t h e   f l o w   f i e l d  would r e q u i r e   f i n e r  

and f i n e r  mesh s i zes .  I n   t h i s  problem  Reynolds number i s  d i r e c t l y   p r o p o r t i o n a l  

t o   t h e   v e l o c i t y   o f   t h e  moving w a l l ,  w h i l e   i n   t h e   p r e s e n t  problem it i s  pro- 

p o r t i o n a l   t o   t h e   v e l o c i t y   o f   u p p e r   c h a n n e l  w a l l .  Hence a large  Reynolds 

number (s.ay 1000) i n   t h e   p r e s e n t  problem  corresponds t o  a much smaller Reynolds 

number based on t h e   a v e r a g e   v e l o c i t y   i n   t h e  f ree  s h e a r   l a y e r  on t o p  of t h e  

cav i ty .  It i s  t h e r e f o r e   b e l i e v e d   t h a t   t h e   r e s u l t s   o b t a i n e d   u s i n g  99 g r i d  

p o i n t s   i n s i d e   t h e   c a v i t y  are accura te   for   the   en t i re   range   of   Reynolds  numbers 

inves t iga t ed  (1 - 500) .  

Cons tan t   s t r eaml ine   p lo t s   a r e  shown i n   F i g s .  7 t o  10 and i n   F i g s .  11 and 

12  for t h e   a s p e c t   r a t i o s   o f  1 . 0  and 0 .5 ,  r e s p e c t i v e l y .  Only  one  vortex i s  

observed   in   these   cases .  An increase   in   the   Reynolds  rumber a f f e c t s   t h e  

vo r t ex   f l ow  a s   fo l lows :  (1) t h e   s t r e n g t h  of t h e   v o r t e x  f i r s t  increases   and 

t h e n   d e c r e a s e s ;   ( 2 )   t h e   v o r t e x   c e n t e r   s h i f t s  downstream  and i n  an.upward  direc- 

t i o n ;  ( 3 )  t h e   s t r e a m l i n e s   i n   t h e  free shear   l ayer   c lus te r   toge ther ;   and  ( 4 )  t h e  

s t reamline  dividing  the  cavi ty   f low  and  the  channel   f low i s  concave a t  low 

Reynolds  numbers  and  convex a t  high  Reynolds  numbers. 

Two v o r t i c e s ,  one s t ronge r   t han   t he   o the r ,  are observed  (Figs.  13 and 14) 

for a deep   cav i ty   having   an   aspec t   ra t io   o f  2.0.  The pr imary   vor tex   ex tends   to  

a depth of 75.0 per   cen t  and 70.9  per   cent  of t h e   c a v i t y   h e i g h t   f o r  N f  = 1 .0  

and N' = 100.0,  r e spec t ive ly .   Th i s   vo r t ex   has  a h e i g h t   t o   l e g n t h   r a t i o   o f  

1.464, f o r  NAe = 1 . 0  and 1.460 f o r  NAe = 100.0.  The numerical   creeping  f low 

solut ion  of  Pan  and  Acrivos,   for  the  prototype  problem  with  the same aspec t  

r a t i o   p r e d i c t s   t h i s   r a t i o   t o   b e  1 . 4 .  

Re 

R e  

The e f fec t   o f   the   p resence   o f   the   cav i ty  on t h e   e x t e r n a l  stream ( t h e  

channel  flow) i s  shown i n   F i g .  15. The v a r i a t i o n   o f   v e l o c i t y  u wi th   respec t  

t o  z , a t  one g r fd   po in t  away from t h e  wall having   the   cav i ty  i s  given.  A t  

* 
* 
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high  Reynolds number t h e   v e l o c i t y   i n   t h e   n e i g h b o r h o o d   o f   t h e   c a v i t y   d e v i a t e s  

less from the   cor responding   va lue   o f   the   Couet te   f low a t  t h e   e n t r a n c e  and 

t h e   e x i t . o f   t h e   c h a n n e l .  The  sudden  removal  of t he   p re sence   o f   t he   channe l  

wall r e s u l t s   i n  a smaller a c c e l e r a t i o n   o f   t h e   p a r t i c l e s   n e x t   t o   t h e  w a l l  a t  

high  Reynolds  numbers. 

In  the  numerical   procedure  followed  here,   the  upstream  and  downstream 

c o r n e r   p o i n t s   ( t h a t  may be   s ingu la r )  were cons ide red   t o   be   g r id   po in t s .  

The b e h a v i o r   o f ' t h e   s o l u t i o n  a t  t h e s e   p o i n t s  was t h e r e f o r e   s t u d i e d .   F i g s .  16 

and 17 show the   e f fec t   o f   changing  Ay and Az on t h e   v a l u e s   o f   t h e   v o r t i c i t y  

a t  the   corners .   These   va lues   increase  as Ay decreases  (Az be ing   he ld  

c o n s t a n t ) .  However, at one gr id   point   upstream  of   the  upstream  corner   and 

one g r i d   p o i n t  downstream  of t h e  downstream c o r n e r ,   v a l u e s   o f   v o r t i c i t y  were 

prac t ica l ly   unchanged.   (Note ,   for  Ay = 0.05 ,  t h e  stream funct ion  and 

v o r t i c i t y  were r e l axed  m e  order  of magni tdue   lower   than   those   for   the   o ther  

values  of Ay . When  Az w a s  decreased,  keeping Ay c o n s t a n t ,   t h e   v o r t i c i t y  

va lues  a t  the   co rne r s  were p rac t i ca l ly   cons t an t .   Thus ,  it seems t h a t   t h e s e  

poin ts   do   no t   apprec iab ly   in f luence  t.he  flow f i e l d  a t  a small b u t   f i n i t e  

d i s t ance  away. 

* * 
* * 

* 

* * * 

The  development  of t h e   v o r t e x   i n   t i m e  was s tudied  using  the-   configurat ion 

af   the  prototype  problem  for  NAe = 10 .0 .  It w a s  decided  not t o   s o l v e   f o r  

t h e   t r a n s i e n t   s o l u t i o n   i n s i d e   t h e   c a v i t y   i n  a channel wall i n   o r d e r   t o  con- 

cen t r a t e   on ly  on the ' fo rma t ion   o f   t he   vo r t ex  and  keep  the  computer  cost low. 

The upper   hor izonta l   p la te  was moved with a cons t an t   ve loc i ty  a t  t > 0. The 

nature   of   the   vortex i s  shown i n   F i g s .  18 t o  23 f o r   d i f f e r e n t  t . The 

s t rength  of   the  vortex  increases   uniformly  and a t ta ins  the   s t eady- s t a t e   va lue  

asymptot ica l ly   (F ig .  2 4 ) .  This   value i s  in   be t t e r   ag reemen t   w i th   t he   va lue  

obtained  by  Burggraf   than  that   calculated  f rom  s teady-state   equat ions.   This  

* 
% 
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is  mainly  due to the  fact  that  the  unsteady-state  finite  difference  formula- 

tion  uses  central  differences  whereas  the  steady-state  formulation  employs 

one-sided  differences for first  derivatives  in  the  vorticity  equation. 

Finally,  other  investigators  have  reported  corner  eddies  for  square 

cavities.  The  present  study  that  utilizes  a  relatively  coarse  grid  does  not 

indicate  any  corner  eddies. 
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CHAPTER I V  
CONCLUSIONS 

1. Steady  laminar  incompressible  f low  in  two-dimensional  channels 

wi th  a rec tangular   cu t -out  were obtained  using  an  expl ic i t   numerical  method 

for solving  the  complete  Navier-Stokes  equations.  Solutions were obtained 

for a s p e c t   r a t i o s  of 0 . 5 ,  1.0 and 2.0, and for Reynolds  numbers of 1, 10, 

100, and 500. 

2. The number o f   e d d i e s   p r e s e n t   i n   t h e   c a v i t y  depend  only  on t h e   a s p e c t  

r a t i o .  For a s p e c t   r a t i o s  o f  0 .5  and 1 . 0 ,  one  vortex was observed. However, 

f o r   a s p e c t   r a t i o   o f  2 .0  two vor t i ce s   were   p re sen t ,  one  on top   of   the   o ther .  

The d iv id ing   s t reaml ine  was a t  a cavi ty   depth   o f  0.75 a t  Reynolds number 

u n i t y  and .TO9 a t  N '  = 100. Re 

3 .  The s t reaml ine   d iv id ing   the   ex te rna l   f low  and   the   cav i ty   f low w a s  

concave for low Reynolds  numbers  and  convex for  high  Reynolds numbers. 

4 .  A s  the  Reynolds number was increased ,   the   s t rength   o f   the   vor tex  

increased  and then  decreased,   and  the  vortex  center  moved downstream  and up- 

ward,   creat ing a t h i n   s h e a r   l a y e r .  

5 .  The ca l cu la t ed   vo r t i c i ty   va lues   a t   t he   ups t r eam  and  downstream 

corners   d id   no t   appear   to   approach  a limit as t h e   g r i d   s i z e  was decreased. 

However, t h e   v o r t i c i t y   v a l u e s  a t  n o d a l   p o i n t s   n e x t   t o   t h e s e   c o r n e r s ,   l e v e l e d  

off as t h e  number of g r i d   p o i n t s  was increased .  

6. In   t he   p re sen t   p rob lem  the   shea r   l aye r  on top   o f   t he   cav i ty  and  along 

t h e   c a v i t y  wall i s  not   very   th in   even  a t  large  Reynolds number (based on 

channe l   f l ow)   hence ,   r e su l t s   ob ta ined   w i th   r e l a t ive ly   coa r se   g r id  may be  accur- 

a te  even a t  large  Reynolds  numbers. 

7.  In   o rder   to   observe   the   ac tua l   vor tex   format ion   the   t ime-dependent  

so lu t ion   for   the   p ro to type   problem was de te rmined   u s ing   an   imp l i c i t   a l t e r -  
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n a t i n g   d i r e c t i o n  method t o   s o l v e   t h e   v o r t i c i t y   e q u a t i o n  and  an e x p l i c i t  re- 

l axa t ion   p rocedure   fo r   t he   so lu t ion  of the   s t ream  funct ion  equat ion.  The 

s t r e n g t h  of the   vor tex   increased   un i formly   and   a t ta ined   the   s teady  state 

value  asymptot ical ly .  

8. The s t eady- s t a t e   r e su l t s   de t e rmined  from the  unsteady-state  equa- 

t i o n s  were i n   b e t t e r  agreement   wi th   Burggraf ' s   resu l t s   ( for   the   p ro to type  

problem)  than  those  calculated  from  steady-state  equations.   This may be 

due  mainly t o   t h e   f a c t   t h a t   i n   t h e   f o r m e r   s t u d y   c e n t r a l   d i f f e r e n c e s  were 

used  for   f i rs t   der ivat ives   whereas   one-sided  differences  were  used  in   the 

l a t t e r   s t u d y .  
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APPENDIX 
THE FORTRAN PROGRAM 

I n   t h i s  appendix  the  computer  program  used  in  this work i s  b r i e f l y  

descr ibed .  The  program was w r i t t e n   i n   F o r t r a n  I V  f o r   t h e  IBM 360  Computer. 

The nota t ions   used   in   the   p rogram are l i s t e d  and  defined  below. 

For t r an  Symbol Explanat  ion 

I C  

I L  

J L  

NMAX 

L a s t  g r i d   p o i n t   i n   t h e  y -d i r ec t ion  of  
t he   channe l  

Last g r i d   p o i n t   i n   t h e  y -d i r ec t ion  
( channe l   p lus   cav i ty )  

L a s t  g r i d   p o i n t   i n  x -d i r ec t ion  

Maximum number of i t e r a t i o n s  for $ and 
s t eady- s t a t e  n* equat ions 

* 

* 

* 
B 

KL1 Frequency of  pr in t -out  of maximum res idues  

KL2 

KL3 

KL4 

KL6 

KL9 

KL10 

KL13 

Output  option: 1 - no CHRT output  

Outpu; op t ion:  5 - read  $ , rl , u , v 
and t from magnetic  tape,  6 - write $*, 
Q*, us, v* and t* on magnetic  tape,  7 - do 
both of above 

B B * t  

Problem  option: 1 - prototype  problem, 
2 - channel   with  cavi ty  

Output  option: 1 - no $ and rl CHRT 
b B 

output  

P lane   op t ion :  1 - no t ransformat ion ,  3 - 
transformed  plane 

Frequency  of  unsteady-state CHRT output  

S t a t e   o p t i o n :  1 - unsteady s ta te  

I n i t i a l   v a l u e   o p t i o n :  1 - i n i t i a l   v a l u e s  
p r i n t e d  

u ,  v ,  x and y pr in ted   (d imens iona l   ou tput )  

Nature  of boundagy condi t ion  a t  J = J L :  
1 - func t ions  JI and q* def ined ,   o ther -  
wise no rma l   de r iva t ives   equa l   t o   ze ro  
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KL18 

C 

RNN 

BPS1 

Must be equal  t o  1 

AX*/AyX 

Reynolds number , NAe 

Over- re laxa t ion   fac tor  for s t ream  func t ion  
equat ion 

BVRT Must be  equal t o  1 

DPSIM 
* 

Maximum a l lowable   res idue  of 9 

DVRTM Maximum a l lowable   res idue  of rl (for 
s t e a d y - s t a t e )  

w 

J 2  Value o f  J a t  which t h e   c a v i t y  s tar ts  

J M  Value o f  J about   which  the  cavi ty  i s  
symmetric 

J3 Value of J at which the   cav i ty   ends  

LENGTH Dimensional  length of  t h e   c a v i t y  

DLTT 

NTMAX 

NMAXl 

A t  
* 

Number of time s t e p s  

Maximum number of i t e r a t i o n s  f o r  $ 
(unsteady s t a t e )  

* 

Z M I N  Must be  0 .5  

KLO,  KL7, K L l 5 ,  K L l 9 ,  KL20, Dummy v a r i a b l e s  - no t   u sed   i n   t he  program 
KL21, HL, ZMAX, AA 

U The v e l o c i t y   i n  y -d i r ec t ion  

W The v e l o c i t y   i n  x -d i r ec t ion  

* 
* 

PSI 

VRT 

DIST 

Y 

DLTZ 

DLTY 

9 
K 

rl 

x 

* 

* 

Y 

Az 

w 

2% 

AY 
w 
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Note,   dur ing  the  ut i l izat ion  of   the  computer   program  given  here ,   the  

comments l i s t e d   i n   t h e  main  program  and t h e   o n e s   l i s t e d  below  should be 

k e p t   i n  mind. 

1. Height   of   the   channel  and the   l eng th   o f   t he   cav i ty   shou ld   be  

t h e  same. 

2. Do not   use   t ransformat ions   g iven   by   the   op t ions  KL6 = 2 and 

KL6 = 4. 

3. The prototype  problem  can  be  solved  only  for   aspect   ra t io   of  1 . 0 .  

4 .  The present  form  of  the  program i s  no t   capab le   o f   so lv ing   fo r   t he  

t r ans i en t   so lu t ion   o f   t he   f l ow  in   t he   channe l   hav ing  a cav i ty .  
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